
DAVID A. LANGS 557 

HAUPTMAN, H. & DUAX, W. L. (1972). Acta Cryst. A28, 
393-395. 

HAUPTMAN, H., FISHER, J., HANCOCK, H. & NORTON, D. 
(1969). Acta Cryst. B25, 811-814. 

HAUPTMAN, H., FISHER, J. & WEEKS, C. M. (1971). Acta Cryst. 
B27, 1550-1561. 

HOWELLS, E. R., PHILLIPS, D. C. & ROGERS, D. (1950). Acta 
Cryst. 3, 210-214. 

HULL, S. E. & IRWIN, M. J. (1978). Acta Cryst. A34, 863-870. 
KARLE, J. (1970). Acta Cryst. B26, 1614-1617. 
KARLE, J. (1979). Proc. Natl Acad. Sci. USA, 76, 2089-2093. 
KARLE, J. (1980). Proc. Natl Acad. Sci. USA 77, 5-9. 
KARLE, J. (1982). Acta Cryst. A38, 327-333. 
KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635-651. 
KARLE, J. & HAUPTMAN, H. (1957). Acta Cryst. 10, 515-524. 
LANGS, D. A. (1988). Science, 241, 188-191. 
LANGS, D. m. (1993). Acta Cryst. D49, 158-167. 
MAIN, P. (1977). Acta Cryst. A33, 750-757. 

MESSAGER, J. C. & TSOUCARIS, G. (1972). Acta Cryst. A28, 
482-484. 

PLETNEV, V. Z., GALITSKII, N. M., IVANOV, V. T., SMITH, 
G. D., WEEKS, C. M. & DUAX, W. L. (1980). Biopolymers, 19, 
1517-1534. 

PLETNEV, V. Z., IVANOV, V. T., LANGS, D. A., STRONG, P. D. 
& DUAX, W. L. (1992). Biopolymers, 32, 819-827. 

PLETNEV, V. Z. MIKHAILOVA, I. YU., IVANOV, V. T., LANGS, 
D. A., GROCHULSKI, P. & DUAX, W. L. (1991). Biopolymers, 
31,409-415. 

SMITH, G. D. & KRISTENANSKY, J. (1991). Unpublished work. 
TSOUCARIS, G. (1970). Acta Cryst. A26, 492-499. 
VAUGHAN, P. A. (1958). Acta Cryst. 11, 111-115. 
VITERBO, D. & WOOLFSON, M. M. (1973). Acta Cryst. A29, 

205-208. 
WOOLFSON, M. M. (1954). Acta Cryst. 7, 65-67. 
YAO, J. (1981). Acta Cryst. A37, 642-644. 
YAO, J. (1983). Acta Cryst. A39, 35-37. 

Acta Cryst. (1993). A49, 557-569 

On Direct-Methods Phase Information from Differences Between 
Isomorphous Structure Factors 

BY CHRISTOS E. KYRIAKIDIS, RENl~ PESCHAR AND HENK SCHENK 

Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, 
1018 WV Amsterdam, The Netherlands 

(Received 4 June 1992; accepted 2 November 1992) 

Abstract 

An efficient procedure is presented for the derivation 
of joint probability distributions of isomorphous 
data sets. The new technique is based on the use of 
the differences of isomorphous structure factors as 
random variables. It will be shown that the usual 
probabilistic techniques, applied to these random 
variables, finally result in the joint probability distri- 
bution of three single differences of isomorphous 
structure factors comprising three doublet and eight 
triplet phase sums. An advantage of the new technique 
is that the inherent correlation between the isomor- 
phous data sets is removed if a probabilistic pro- 
cedure is set up for the small difference itself. In this 
way, an enormous mathematical simplification is 
obtained while the final results are much better 
than those obtainable by previous probabilistic 
expressions. The final triplet distribution seems to be 
of sufficient quality to be used in a normal direct- 
methods procedure. In contrast to usual approaches, 
the heavy-atom substructure need not be solved first. 
The probabilistic expression will be explained in 
detail for one and three single differences. Applica- 
tions for the cases of single anomalous scattering, 
two different wavelengths and single isomorphous 
replacement (excluding anomalous-scattering effects) 
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for both real and randomly generated data show the 
strength of the method. 

c.f. 
j.p.d. 
c.p.d. 
(p.)r.v. 
s.f. 
SD 
DM 
DR 
SIR(N)AS 

SAS 

2DW 

Abbreviations 

Characteristic function 
Joint probability distribution 
Conditional probability distribution 
(Primitive) random variable 
Structure factor 
Single difference 
Direct methods 
Diffraction ratio 
Single isomorphous replacement 
(neglecting) anomalous scattering 
Single-wavelength anomalous 
scattering 
Two different wavelengths 

I. Introduction 

The crystal structures of relatively small molecules 
with up to 100 independent atoms are readily deter- 
mined from diffraction intensities by means of DM 
techniques relying on the mathematical application 
of a j.p.d, of complex-valued structure factors. DM 
estimate phases from the intensities and when these 
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phases are approximately correct the maxima in the 
Fourier summation based upon measured magnitudes 
and estimated phases correspond with the atomic 
coordinates. An increase of the size of the structure 
reduces the reliability of the phase estimates and 
consequently obstructs the structure determination 
via traditional DM (see, for example, Woolfson, 
1987). 

For large structures, the probability of imaging an 
incomplete structure or only a fragment increases. In 
macromolecular crystallography, the size problem is 
partly solved by introducing more data about the 
same structure, e.g. by SAS, SIRAS, SIRNAS, 2DW 
etc. (see, for example, Karle, 1989). 

Various techniques exist to complete partial struc- 
tural models provided the model contains a sufficient 
amount of scattering power. Techniques that have 
proved to be successful are the tangent recycling 
methods (Karle, 1970; Hull & Irwin, 1978), the 
Fourier recycling methods (K_inneging & de Graaff, 
1984) and the tangent recycling methods applied to 
the difference s.f.s (Beurskens, Prick, Doesburg & 
Gould, 1979). This last technique, upon which the 
D I R D I F  system of programs is based, has been 
very successful in completing heavy-atom models 
(Beurskens et al., 1991). Also, extension of SIRNAS 
models (Sim, 1959) relies on an initial model (in 
general the heavy-atom substructure) from which 
partial structure factors can be calculated. The sub- 
sequent structure completion is based on the 
difference between the total and the model structure 
factors, this difference being a function of the non- 
model atoms while the phase model is usually derived 
from the substructure. The completion of the structure 
can be achieved in various ways (see, for example, 
Camalli, Giacovazzo & Spagna, 1985; Beurskens & 
Smykalla, 1991). A disadvantage of the above tech- 
niques is that a partial model must be available. 
Therefore, in this paper, a different approach will be 
followed. It will be shown that differences between 
isomorphous s.f.s (hereafter, these differences will be 
called SDs) can be defined to which the usual prob- 
abilistic machinery can be applied but which do not 
require an initial structural model. A major advantage 
of the new technique is that the inherent correlation 
between the isomorphous data sets is removed if a 
mathematical procedure is set up for the small 
difference itself. An important goal of the paper is 
the derivation of a new expression to estimate the 
triplet phase sums present among isomorphous data. 
It will be shown that the new procedure, supple- 
mented by optimal doublet phase-sum estimates that 
use difference Patterson information [Kyriakidis, 
Peschar & Schenk (1993b), from now on referred to 
as KPS2], leads to far better results than obtainable 
by other j.p.d.-based expressions (Hauptman, 
1982a, b; Giacovazzo, 1983; Giacovazzo, Cascarano 
& Zheng, 1988; Fortier & Nigam, 1989; Peschar & 

Schenk, 1991; hereafter P&S), in particular if the DR 
is small (Kyriakidis, Peschar & Schenk, 1993a; from 
now on KPS 1). In contrast with other DM techniques, 
the final triplet distributions in the SAS and 2DW 
cases seem to be of sufficient quality to be used in a 
normal DM procedure. 

2. The single differences of isomorphous s.f.s 

Hitherto, the use of DM to solve structures from 
single-crystal data seems to have been limited to small 
structures. The reason for this is clear: the j.p.d, of 
three structure factors depends in first approximation 
o n  N -1/2 so the j.p.d, gets increasingly flattened if N 
becomes large. On the other hand, large structures 
such as proteins have been solved using SIRNAS 
and/or  SAS. This raises the question of why DM fails 
while other techniques succeed. 

An efficient way to improve the applicability of 
DM is to reduce the number of variables (N)  in- 
volved. In the case of isomorphous data, as present 
in techniques such as SIRNAS, SIRAS, SAS and 
2DW, this reduction can be achieved in a very simple 
way. It has been shown recently that the concept of 
isomorphous structure factors can be useful for esti- 
mation of the doublet and triplet phase sums present 
amongst them (KPS1; KPS2). From the tests, it 
appeared that for too low DRs, i.e. almost perfectly 
isomorphous structures, no useful estimates could be 
obtained, even for small structures. Analyses showed 
that in these cases the reliability indicators were no 
longer properly defined. If the differences between 
isomorphous structure factors become too small, the 
normal mathematical procedure more or less fails. It 
seems that the very small quantities cannot be 
expressed in terms of the usual variables. 

This suggested that a different type of r.v. should 
be defined: the single difference of isomorphous s.f.s, 
F d , which is the difference between two isomorphous 
structure factors F:,, and FT.  The subscript v refers 
to a particular reflection and the superscripts l, m and 
d denote dependence on the isomorphous data sets 
l, m and both l and m, respectively. We have 

N 

F d = Ft~ - F~ = Y. fJ~ exp (27rills. rj) 
j = l  

N 

- E f ~  exp (27rills. rj) 
j = l  

= ~ ( f ] ~ - f j ~ )  exp (2~rin~. rj) 
j = l  

= Fa~ exp(i~0d), (1) 

where f]~ and fj~ represent the atomic scattering 
factors for a corresponding group of two isomorphous 
data sets in space group P1 defined in a general way 
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including anomalous-scattering effects, 

fJ~- fJ(H~) =f°(H~)+f~ + if'] 

= fff(H,.,) + / f j '  

= IfJ. exp (iSJ,,). (2) 

(Some of the f~, may be zero or negative in the 
neutron diffraction case.) 

Expression (1) shows that F d depends only on the 
number of atoms (n) for which the atomic scattering 
factors differ in Ft,, and F~  while, in contrast, Ft~ and 
F~  depend on all N variables. Both the magnitude 
[Fal and the phase ~pa~ of F~ a are functions of the 
magnitudes and phases of FZ~ and F~ .  For our pur- 
pose, the following expression for IFgl is important: 

[ d2 F,,[ = Fl,, 2 .at_ F m 2 t m -2F,I F ,  cos ~ d ,  (3) 

where ~0 a is the doublet phase sum between the data 
sets I and m, 

l ~o,, + s a~ 7 = g/d (4) 

with 

sd = {--1 for the cases SIR(N)AS, 2DW etc. 
(5) ( 1 for SAS case. 

F d can be considered formally to be a 'structure 
factor' so all j.p.d.s developed so far apply. In the 
following we will focus on the j.p.d, of one single Fa~ 
(§ 2.1) and the j.p.d, of the three S Ds of i somorphous 
s . f . s  d d d F1, F2 and F3 (§ 2.2). 

2.1. Thej.p.d. o f  a single difference o f  isomorphous s . fs  

The j.p.d, of a s.f. provides a good starting point 
to obtain the j.p.d, of the SD. The normalized j.p.d. 
of a single structure factor F~ in space group P1 with 
random variables R~ for IF.I and @~ for the phase 
of F~ can be derived as (see, for example, the 
Appendix) 

P(R~, q b ) =  2R~(z~)-' exp [-R2(z~) -1] (6) 

with z~ defined as 

N 

z ,=  z If~,l 2. (7) 
j = l  

From (6), (RE) can be calculated with a standard 
integral formula (Abramowitz & Stegun, 1970), which 
results in 

= R~P(R~, crp~) dR~ = z~. (8) 
0 

From the above, the j.p.d, for a single IF~I (using the 
r .v . s  R d~ and ~a  for the magnitude and the phase of 
the F d, respectively) is 

p ( g  d, ~d) d d --1 a 2 d --1 =2R~(z, ,)  exp [ (9) - ( R ~ )  (z~) ] 

with 

d ~,, ! m2  z~ = fJ~-f j~[  . (10) 
j = l  

From (3) and (8), it follows that 

-1 e (11) ( F ' f + l F 7  2-2 Ft. IF. [ cos ¢~)= z.. 
With the assumption that IF'~l and IF?I are known 
exactly, (11) can be rewritten 

(cos ~,~) 
12  m2  - ( I f ~ l + l F ~  - a , m - z , , ) l ( 2 1 F , I I F ,  ). (12) 

Equation (12) is identical to (14), which is derived 
algebraically in KPS2. In KPS2, it has been shown 
that (12) may lead to accurate doublet estimates. 

2.2. The j.p.d, o f  three SDs of  isomorphous s.f.s 

First, the j.p.d, of three s.f.s (with anomalous- 
scattering effects included) will be introduced and 
then, starting from the c.p.d, of three s.f.'s, the c.p.d. 
of three SDs will be obtained. 

Recently, a general method has been proposed to 
derive j.p.d.s of s.f.s allowing the use of complex- 
valued atomic scattering factors (P&S). In this 
method, these atomic scattering factors are denoted 
as in (2). The j.p.d, in space group P1 of the general- 
valued s.f.s FH, FK and F ,  can be expressed by means 
of the r.v.s R~, R2 and R 3 for the magnitudes [FHI, 
IF~l and IFI, respectively, and the r.v.s q~l, ~2 and 
(J~3 for the phases ~H, ~0K and ~L, respectively, 

P(R1, R 2 ,  R 3 ,  t P l ,  (P2, I~3) 

co oo co 27r 21r 2~- 

=RIR2R3(ETr) -65  ~ ~ ~ ~ I RJP2R3 
0 0 0  0 0 0 

({3 }) 
x exp - i  ~=1 [p~R~ cos (0~-  qb)] 

X C ( P l ,  P2 ,  P3 ,  01,  02,  03) 

x dO1 dO2 d03 dpl dp2 dp3. (13) 

After the terms up t o  O(N -1/2) have been collected 
and the moments-cumulants transformation has been 
performed, the c.f. C becomes 

I 3 
C : e x p  - ~. ( p 2 / 4 ) z , - i  z123 (plp2p3/4) 

1/=1 

in which 

x cos (0~ + 02 + 03 + A~23)], (14) 

N 
z~= Y. [fj~ 2 (for u =  1,2,3) 

j = l  
(15) 
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and 

Z123 = Z123 exp (iA123) 

N 

= E £1£2£3 exp[-i(6j ,+6jz+6j3)] .  (16) 
j = l  

The evaluations of (13) and (14) can be performed 
in a standard way (see, for example, Peschar, 1991) 
and result in 

P(R1, R2, R3, O l ,  O 2 ,  O3)  

= (R1R2Ra/zlz2z3rr 3) 

x exp [ - g 2 / z , -  RE~ z 2 - R2/z3 

+ (2z123R1R2R3/Zl z2z3) 

X COS ( O1 "~- O2 "~- O3 "~- A 123)]. (17) 

Finally, the r.v. for the triplet phase sum ~3 is defined 
to be ~23,  so 

1/)'123 = O l ' q -  O2"}- O 3 (18) 

and the normalized c.p.d, of gq23 given the R~, R2 
and R 3 is readily obtained as 

P( 1/~123 [ R1, R2, R3) 

= L -1 exp [(2 zI23[/zIz2Z3)R1R2R 3 

x cos (qq23+A~23)] (19) 

with L the normalization constant, 

L=27rIo(2Z123RiR2R3/ZlZ2Z3). (20) 

Finally, from (19), an expectation value for ~23 can 
be obtained, 

(exp (i~23)) = [I~(2w~23)/Io(2W~23)] exp (-iA~23) 
(21) 

with 

w123 = z123 R1 R2 R3/ zl z2z3. (22) 

The distribution for qq23 is centred around -AlZ3 and 
Ia/Io acts as a statistical weight (11 and Io are modified 
Bessel functions). 

The j.p.d, theory recalled above is directly appli- 
cable to the SDs of isomorphous s.f.s. In analogy 
with (13)-(22), the c.p.d, of the triplet phase sum, 
present among the F d ,  F d and F d, can be expressed 
a s  

P( ~['f ld23 Rf ,  R2 d , R3 a) 

_(La)-I_ exp[(2zf23/z fzd2zd)R,  d 

xcos ( ~f23+ za f23)1, (23) 

where R~ a, R2 a, R3 a are the r.v.s for the three magni- 
tudes F~,  IF~[ and IF~I, respectively. The r.v. 
for the difference isomorphous s.f.s triplet 03 a is 

defined as 

furthermore 

and 

~,f=, = o f  + o f  + o g ,  (24) 

zld23 = zf23 exp[iad231 

= -f.il)(fj2-fj2)(fj3-fj3). (26) 
j = l  

L d is the normalization constant, which is defined, 
in analogy with (20), by substitution of the variables 
R and z by R a and z a, respectively. 

From (23), an expectation value for d qt 323 is readily 
obtained as 

(exp (iqtf23))= [I,(2wf23)/Io(2Wf23)1 exp ( - iA f23) 
(27) 

with 

= 1 K 2 1 K 3 / Z 1 Z 2 Z  3 • (28) 

With (1) taken into account, the product of the r.v.s 
Ral, REd, R3 a and exp (iqtfz3) may be written as 

R d D d i ~ d  , --2 *'3 exp (igfd23) 

(F{ F T ) ( F ~  ~ ' m = - - F2 ) ( F 3 -  F3 ). ( 2 9 )  

The right-hand side of (29) can be expressed fully as 
m 1 m ! (F  !, F,  ) (F  2 F~') _ _  _ _  F 2 ) ( F 3  - -  

l l l = F,F2F3 exp[i(@zl+Oz2+@~)] 

' ' " o ' +  o 7 ) ]  -- FIF2F 3 exp [i(Otl+ 
l m I - F, F2 F3[exp[i(Ot~+O'~+Ot3)] 
I rn m +IF, F2 F3 ]exp[i(Ozl+O~'+O~')] 

m , , o ' +  o ' ) 1  - I F ,  F2F3[exp[i(O~'+ 

' ~ o ; + o 7 ) ]  + IF, F2F3 l exp [ i(0~'  + 
m m I + F, F2 F21exp[i (O?+O~+Ot3)]  

- I F ~ F ~ F ~ ' l e x p [ i ( O ~ + O ~ + O ~ ' ) ] .  (30) 

With the right-hand side of (12) expressed as a cosine, 
it follows that 

l t t  d = -t- A v (31) 

with 
m d I m A d = c o s - l [ (  Ft~2+ F~ 2-z~) / (2F~[  F~I)]. (32) 

From (31) and (32), it is possible to express (30) 
completely in only one of the eight isomorphous 
triplets using 

l l l ,  t m n  1 m n 123=O~+O2 +O3 ( l , m , n = l , 2 ) .  (33) 

' m 2  = f i , , - fJ , ,  (for v =  1,2,3) (25) 
j = l  
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q t l l l  For example, for the triplet --12s, (30) gives 

( F{- P~)( F{-  F~)(F~- F~) 
• 111 1 1 1 = exp [ 1 ~ 1 2 3 ] {  FIF2F3 

-[F11F{F]I exp[ -  iA3 d ] 
1 2 1 -]FIF2F3] 
1 2 2 +[FIF2F31 
2 1 1 --]F1F2F 3 
2 1 2 + IF1FEF3 
2 2 1 + ]FIFEF 3 
2 2 2 - IF1FEF3 (34) 

The term { . . }  does not depend on the triplet ~111 • 123 
11111 • 111 itself and can be expressed as -~123 exp (iA 123). In this 

way, combination of (29) with (34) yields 
d d d R1 R2 R3 exp (iqtld23) 
= A 111 1/f 111 A 111~'1 ,~123 exp [i(~123 + ~lz3ja. (35) 

Obviously, (35) can be combined with (23) and (27). 
While ~d23 is concentrated around --Ad23, ~{1~ is 
concentrated around ( - A  d23 -- A d23). Insertion of (35) 
into (23) gives 

p ( ~ 1 1 1  a a R 1 R : R 3 )  

__ [,') (-~111 11[/,111 111 A ¢23)]  - (Ll11) -1 exp t--,-, 123 cos (~123 + A 123 "-I- 

exp [ - i a  a ] 

exp [-i(aza +A3a)] 

exp [ - i a  a ] 

exp [--i(Ad + A3a)] 

exp [-i(Af+A2a)] 

exp [ - i ( h  f + A2 a + A3a)]}. 

and, finally, 

( 1 ~ 1 2 3 ) )  = 
(exp " 111 111 111 [ t,(2 G,~3)/to(2 a,~3)] 

xexp [ - i ( A  l l l * A d  123-,~123)] 

(36) 

(37) 

with 

G l l l  d --11, ,z fzgz f (38) 
123 ~-- Z123-/-t'123/ 

111 and L 111 the normalization constant 27rlo(2G!23). 
Expressions for the other triplets (33) can be set 

up in a similar way. 

2.3. Test results and discussion 

One of the main results of this paper is the c.p.d. 
of the triplet given the SD magnitudes Fdl, IF~l and 
F d [(36)]. The predictive quality of this expression 

has been assessed and will be compared with that 
of two previously published triplet estimating 
expressions: 

(1) the well known Cochran distribution (Cochran, 
1955); and 

(2) the triplet distribution of P&S. The latter 
formula encompasses both the triplet expressions of 
Hauptman (1982b) and Giacovazzo (1983) in the 
SAS case and the triplet expression of Giacovazzo, 
Cascarano & Zheng (1988) in the SIRNAS case. 

In KPS1 and KPS2, it was shown that correct 
doublet estimates are essential for correct triplet 
phase-sum estimates. In § 2.1, it was demonstrated 
that application of the j.p.d, theory to a single- 
difference structure factor leads to an expression for 
the doublet estimates that is identical with that 
derived by algebraic analysis in KPS2. In analogy 
with KPS2, the following estimates for the doublets 
have been considered: 

(a) the ALG estimate based on the simple 
probabilistic expression (12); 

(b) the PAT estimate - this modified ALG 
estimation technique employs interatomic vector 
information from a special difference Patterson 
synthesis; 

(c) the true doublet values (denoted as the TRUE 
estimate)• 

To facilitate a comparison with the results of KPS1 
and KPS2, the same test structures have been selected. 

(1) Randomly generated structures with only 
one heavy atom in the unit cell and different DR: 
P t - C 6 2 N 1 5 0 2 2  , P t - C 2 4 8 N 6 3 0 8 8 ,  P t - C 4 9 6 N 1 2 7 O I 7 6 ,  P t -  

C 7 4 4 N 1 9 1 0 2 6 4  • 

(2) Randomly generated structures with four 
atoms (two different heavy-atom types) in the 
unit cell and different DR: Hg3Pt-C59N15022 , 

H g 3 P t - C 2 4 5 N 6 3 0 8 8 ,  H g 3 P t - C a 9 3 N I 2 7 O I 7 6 ,  Hg3Pt- 
C741 N 1 9 1 0 2 6 4  . 

The structural types (1) and (2) belong to space 
group P1 and have been constructed in such a way 
that the ratio of C, O and N atoms is comparable 
with that in known proteins. The resolution and the 
unit-cell parameters have been chosen on similar 
grounds. 

(3) The real protein structure APP [avian pan- 
creatic polypeptide (Blundell, Pitts, Tickle, Wood & 
Wu, 1981)] taken from the Protein Data Bank (PDB) 
at Brookhaven National Laboratory (Bernstein et al., 
1977; Abola, Bernstein, Bryant, Koetzle & Weng, 
1987). APP is a small protein crystallizing with Zn z÷ 
in space group C2 with one molecule of 36 amino- 
acid residues in the asymmetric unit (302 atoms) and 
unit-cell parameters a = 34.18, b = 32.92, c = 28.44 ~ ,  
/3 = 105.30 ° and Z = 4 .  The structure was solved 
originally by SIRAS. The heavy-atom derivative 
includes one Hg atom. In the PDB release of July 
1991, this structure is known as 1PPT. 

In all cases, s.f.s have been calculated from the 
atomic coordinates. 

The test results to be presented here involve the 
following isomorphous data-set combinations. 

(a) SAS case. The isomorphous data sets are the 
Friedel-related-index sets {H(SI)} and {-H(S1)} 
both from the same structure S!. 

(b) 2DW case. In this case, the isomorphous data 
sets used are {H(AI)} and {-H(A2)}, with A1 = Cr Ka 
radiation and A2 = Fe Ka radiation (Cr Ko~-Cu Ka 
for APP). 
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Table 1. Cumulative statistics of the triplet phase sums for different probabilistic expressions 

SAS case, space group P1, resolution 2.3 A,, radiation Cr Ka, strongest 250 ]E~[ values used. 

Legend for this and other tables: 
COCHRAN Triplet estimation with the Cochran (1955) distribution 
P&S (ALG) Triplet estimation with the P&S probabilistic theory with doublet estimates by the algebraic technique 
P&S (PAT) Triplet estimation with the P&S probabilistic theory with doublet estimates by the improved algebraic technique 
P&S (TRUE) Triplet estimation with the P&S probabilistic theory when the doublet estimates are equal to the true doublet values 
SD (ALG) Triplet estimation with the presenting probabilistic theory with doublet estimates by the algebraic technique 
SD (PAT) Triplet estimation with the presenting probabilistic theory with doublet estimates by the improved algebraic technique 
SD (TRUE) Triplet estimation with the presenting probabilistic theory when doublet estimates are equal to the true doublet values 

Abbreviations 
HKL 
DR 
W 
NTR 
AER Mean abosolute triplet error in mc (1000 mc = 2~" rad) [(39)] 
ERR Mean triplet error in mc [(40)] 

(a) Structure: Pt-C62NlsO22, DR = 0.26; negative doublets: 5 

COCHRAN P&S (ALG) 
W NTR ERR W NTR AER ERR 

0.4 273 95 120 300 38 40 
0.2 1335 113 90 1161 38 42 
0.0 3750 116 0 3750 50 56 

Triplet indices EST Triplet estimation using (36) 
Diffraction ratio (KPS1) TRUE True triplet values 
Reliability factor of the distribution (the W values for the SD distribution should be multiplied by 10 -3) 
Number of the triplets involved in the statistic (for the P&S and SD distributions this number should be multiplied by 8) 

SD (ALG) 
W NTR AER ERR W 

6.7 193 7 8 7.1 
5.9 1121 13 14 6.2 
0.0 3750 14 17 0.0 

(b) Structure: Pt-C24sN63Oss; D R =  0.17; negative doublets: 20 

COCHRAN P&S (ALG) 
W NTR ERR W NTR AER ERR 

0.4 133 128 25 234 59 67 
0.2 1019 145 15 1150 75 91 
0.0 2232 156 0 2232 84 103 

SD (ALG) 
W NTR AER ERR W 

2.0 237 30 38 2.4 
1.6 1223 35 45 1.8 
0.0 2232 45 60 0.0 

(c) Stru~ure:Pt-C496N127O176; D R =  0.13; negative doublets: 25 

COCHRAN P&S (ALG) 
W NTR ERR W NTR SER ERR 

0.5 103 149 15 177 88 128 
0.3 552 151 10 488 100 131 
0.0 900 163 0 900 100 130 

SD (ALG) 
W NTR AER ERR W 

0.8 190 41 60 1.1 
0.7 417 55 73 0.9 
0.0 900 65 93 0.0 

W 

100 
95 
0 

SD (TRUE) 
NTR AER 

152 5 
1128 6 
3750 7 

W 

30 
15 
0 

SD (TRUE) 
NTR AER 

248 11 
1287 13 
2232 14 

P&S (TRUE) 
NTR AER 

123 36 
1104 36 
3750 46 

ERR 

5 
6 
7 

ERR 

38 
39 
51 

W 

20 
10 
0 

SD (TRUE) 
NTR AER 

168 17 
407 18 
900 27 

P&S (TRUE) 
NTR AER 

215 61 
1093 63 
2232 70 

ERR 

11 
13 
14 

ERR 

64 
69 
80 

(d) Structure: Pt-C744NI910264; DR = 0.11; negative doublets: 24 

COCHRAN P&S (ALG) 
W NTR ERR W NTR AER ERR W 

0.4 107 182 10.0 220 93 131 10.0 
0.2 389 178 7.5 384 93 131 5.5 
0.0 880 184 0.0 880 101 135 0.0 

SD (ALG) SD (TRUE) 
W NTR AER ERR W NTR AER 

0.5 125 61 81 0.7 161 23 
0.4 507 61 87 0.6 320 25 
0.0 880 65 91 0.0 880 35 

P&S (TRUE) 
NTR AER 

103 60 
452 79 
900 84 

ERR 

17 
19 
30 

ERR 

75 
97 

106 

P&S (TRUE) 
NTR AER ERR 

273 75 90 
453 86 107 
880 91 115 

ERR 

23 
25 
37 



CHRISTOS E. KYRIAKIDIS,  RENE PESCHAR A N D  HENK SCHENK 563 

Table 2. Cumulative statistics of the triplet phase sums for different probabilistic expressions 

SAS case,  space  g roup  P1,  resolu t ion  2.3/~,  rad ia t ion  Cr  Ka, s t rongest  250 [E,[ values used. 

( a )  Structure:  Hg3Pt-CsgNlsO22; D R =  0.34; negat ive double ts :  0 

C O C H R A N  P&S ( A L G )  P&S (PAT)  
W N T R  E R R  W N T R  A E R  E R R  W N T R  A E R  E R R  W 

0.45 251 45 900 181 38 44 1500 149 15 16 2500 
0.30 1020 50 650 770 34 40 1000 1041 23 25 1000 
0.00 3750 80 0 3750 49 60 0 3750 48 58 0 

P&S ( T R U E )  
N T R  A E R  E R R  

123 14 15 
1313 27 31 
3750 48 58 

SD ( A L G )  SD (PAT) SD ( T R U E )  
W N T R  A E R  E R R  W N T R  A E R  E R R  W N T R  A E R  

6.1 184 58 72 25 178 4 4 28 171 3 
5.5 1131 53 65 14 1032 9 10 17 1001 9 
0.0 3750 51 62 0 3750 47 60 0 3750 42 

E R R  

3 
9 

51 

(b)  Structure:  Hg3Pt-C245N63Os8 , D R =  0.28; negat ive  doublets :  1 

C O C H R A N  P&S (ALG)  P&S (PAT) 
W N T R  E R R  W N T R  A E R  E R R  W N T R  A E R  E R R  W 

0.40 159 76 90 162 34 38 250 108 26 28 250 
0.30 610 85 70 639 41 48 150 671 33 36 150 
0.00 2555 100 0 2555 51 60 0 2555 53 61 0 

P&S ( T R U E )  
N T R  A E R  E R R  

lO8 26 28 
682 33 36 

2555 52 60 

SD ( A L G )  SD (PAT) SD ( T R U E )  
W N T R  A E R  E R R  W N T R  A E R  E R R  W N T R  A E R  

4.2 135 73 81 20 159 6 6 20 115 4 
3.5 778 59 69 14 638 9 10 13 721 7 
0.0 2555 63 75 0 2555 38 47 0 2555 35 

E R R  

4 
7 

44 

(c) Structure:  Hg3Pt-f493N127O176, D R =  0.23; negat ive  double ts :  2 

C O C H R A N  P&S (ALG)  P&S (PAT)  
W N T R  E R R  W N T R  A E R  E R R  W N T R  A E R  E R R  W 

0.5 164 121 35 179 65 80 80 138 41 46 80 
0.3 598 110 25 525 70 84 25 578 62 72 30 
0.0 1172 118 0 1024 69 85 0 1024 70 85 0 

P&S ( T R U E )  
N T R  A E R  E R R  

173 41 46 
549 57 66 

1024 68 83 

SD ( A L G )  SD (PAT) 
W N T R  A E R  E R R  W N T R  A E R  

2.6 109 73 83 10 107 17 
2.0 498 77 92 5 497 22 
0.0 1172 75 92 0 1172 51 

(d )  S t ru~ure :  HgaPt-C741N1910264; D R = 0 . 2 0 :  negat ive doublets :  4 

C O C H R A N  P&S ( A L G )  
W N T R  E R R  W N T R  A E R  E R R  W 

0.25 289 136 20.0 213 77 105 20.0 
0.20 637 134 8.5 561 83 107 8.0 
0.00 809 135 0.0 809 84 108 0.0 

SD ( T R U E )  
E R R  W N T R  A E R  E R R  

18 10 120 7 7 
23 6 468 12 13 
65 0 1172 42 52 

P&S (PAT) P&S ( T R U E )  
N T R  A E R  E R R  W N T R  A E R  

344 58 72 25.0 311 56 
560 79 99 8.0 557 77 
809 87 111 0.0 809 87 

SD (AL(3) SD (PAT) 
W N T R  A E R  E R R  W N T R  A E R  

1.7 110 71 84 5.6 120 13 
1.4 386 74 98 2.1 413 34 
0.0 809 89 119 0.0 809 72 

SD ( T R U E )  
E R R  W N T R  A E R  E R R  

13 5.3 164 11 11 
42 2.5 418 28 33 
99 0.0 809 67 89 

E R R  

68 
96 

110 

(c) SIRNAS. In this case, the isomorphous data 
sets are defined as {H(S1)} and {H(S2)} with $1 the 
heavy-atom derivative and $2 the native protein. 

In all performed tests, data up to 2.3 A resolution 
and C r K a  radiation were used (for the APP 
structure, data up to 2.0 ~ resolution and Cu Ks  
radiation). 

Cumulative statistics of the triplet phase-sum esti- 
mates for three different probabilistic expressions 
(Cochran, P&S and SDs) are shown in Tables 1, 2 
and 3 for the SAS case for the structural types 1, 2 
and 3, respectively. In each table, seven sets of four 

variables are present. In Table 1, the ALG and PAT 
estimation techniques are identical (only one heavy 
atom in the unit cell, see KPS2) and because of this 
the number of statistics sets is reduced to five. The 
first set lists the Cochran-distribution statistics. The 
next three sets give the P&S statistics when the doub- 
lets are estimated by the ALG and PAT estimation 
techniques and when TRUE doublets are used in the 
probabilistic expression. The last three sets illustrate 
the SD statistics for the ALG, PAT and TRUE doub- 
let-estimation techniques. The four variables involved 
in each set are: the reliability factor of the distribution, 
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Table 3. Cumulative statistics of the triplet phase sums for different probabilistic expressions 

SAS case, s p a c e  group C2, resolution 2.0 A,  radiat ion Cu Ka, strongest 250 lEvi values used, structure APP,  D R = 0 . 1 1 ,  negative 
doublets:  7. 

C O C H R A N  P&S (ALG) P&S (PAT) P&S (TRUE)  
W N T R  E R R  W N T R  A E R  E R R  W N T R  A E R  E R R  W N T R  A E R  E R R  

0.25 315 140 20.0 185 71 97 20.0 255 48 52 30.0 255 48 52 
0.20 906 141 15.0 894 71 92 15.0 1225 55 64 20.0 1021 51 57 
0.00 3750 153 0.0 3750 77 97 0.0 3750 80 100 0.0 3750 79 98 

SD (ALG)  SD (PAT) SD (TRUE)  
N T R  A E R  E R R  W N T R  A E R  E R R  W N T R  A E R  E R R  

122 52 56 0.56 110 17 18 0.80 197 11 11 
1230 58 70 0.40 1018 25 27 0.55 1049 12 12 
3750 69 89 0.00 3750 58 76 0.00 3750 35 52 

w 
0.37 
0.28 
0.00 

Table 4. SD theory - a representative sample of 6 (x8)  triplets 

SAS case, structure APP, space group C2, resolution 2.0 A, radiat ion Cu Ka, strongest 250 lEvi values used, D R  = 0.11. 

H K L EST T R U E  ERR W E n - E - H  EK -- E-K EL -- E-L 

11 60 235 --161 --134 27 0.316 --0.042 --0.115 --0.013 
--177 --149 28 
--165 --142 23 
--181 --157 24 
--147 --117 30 
--163 --132 31 
--152 --125 27 
--168 --140 28 

16 120 195 --95 --95 0 0.446 --0.020 0.021 --0.095 
--113 --116 3 

--81 --78 3 
--99 --99 0 
--82 --80 2 

--100 --101 2 
--68 --63 5 
--86 --84 2 

19 180 191 38 42 4 0.400 --0.057 --0.064 --0.034 
58 66 8 
20 21 1 
40 45 5 
47 53 6 
67 77 10 
29 32 3 
49 56 7 

46 120 173 379 350 29 0.277 --0.131 0.021 0.117 
368 335 33 
365 333 32 
354 318 36 
383 357 26 
372 342 30 
369 340 29 
358 325 33 

47 90 161 231 194 37 0.254 --0.099 --0.030 0.056 
217 179 38 
244 210 34 
231 195 36 
238 205 33 
225 190 35 
252 221 31 
239 206 33 

119 120 178 314 256 58 0.222 --0.069 0.021 0.140 
314 250 64 
328 273 55 
328 267 61 
323 267 56 
323 261 62 
337 284 53 
337 278 59 
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Table 5. Cumulative statistics of the triplet phase sums for different probabilistic expressions 

2 D W  case, space group P1,  resolut ion 2.3 A, radiat ions Cr K a - F e  Kt~, strongest  250 lEvi values used. 

(a )  Structure:  Pt-C62NIsO22; D R =  0.029; negative doublets:  2 

C O C H R A N  SD (ALG)  
W N T R  E R R  W N T R  AER ERR W 

0.3 292 88 0.011 130 23 25 0.012 
0.2 1222 97 0.008 1052 25 26 0.009 
0.0 3750 113 0.000 3750 25 27 0.000 

(b)  Structure:  Pt - f2~N63088;  D R =  0.019; negative doublets:  10 

C O C H R A N  SD (ALG)  
W N T R  E R R  W N T R  A E R  E R R  W 

0.3 133 128 0.0033 140 47 56 0.0047 
0.2 1019 145 0.0020 1087 52 65 0.0026 
0.0 2232 156 0.0000 2232 55 71 0.0000 

(c) S t r u ~ u r e : P t - C 4 9 6 N t 2 7 0 1 7 6 ; D R =  0.014; negative doublets:  10 

C O C H R A N  SD (ALG)  
W N T R  E R R  W N T R  A E R  E R R  W 

0.5 103 149 0.0012 114 80 113 0.0020 
0.3 552 151 0.0007 513 88 127 0.0012 
0.0 900 163 0.0000 900 91 131 0.0000 

(d)  S t r u ~ u r e : P t - C 7 ~ N 1 9 1 0 2 ~ ;  D R = 0 . 0 1 2 ;  negative doublets:  9 

C O C H R A N  SD (ALG)  
W N T R  E R R  W N T R  A E R  E R R  W 

0.4 107 182 0.0008 117 88 118 0.0015 
0.2 389 178 0.0005 435 88 125 0.0008 
0.0 880 184 0.0000 880 91 131 0.0000 

SD (TRUE)  
NTR AER E R R  

121 20 22 
1042 22 24 
3750 25 26 

SD (TRUE)  
N T R  AER E R R  

138 30 32 
1176 34 36 
2232 36 39 

SD (TRUE)  
N T R  AER ERR 

133 53 56 
427 57 66 
900 63 76 

SD (TRUE)  
N T R  A E R  E R R  

114 59 63 
385 63 71 
880 70 88 

W;* the number of triplets involved in the statistics, 
NTR; the absolute mean difference in mc (1000 mc = 
27r rad), 

A E R = (  g~3 true--]l//31est); (39) 

and the mean difference in mc, 

ERR = (]~3 tr~¢-~3 cst])- (40) 

The data in Table 1 show that an enormous error 
reduction is gained when (36) is applied, compared 
with the P&S expression. Table l (d)  shows that, even 
for a small DR (0.11) and a relatively large number 
of negative doublets, an acceptable overall error can 
still be obtained. Another striking difference between 
(36) and the P&S expression is the much lower triplet 
error for the former if the true doublet values are 
used. This demonstrates that, provided the doublet 
estimates are correct, the triplet estimation via (36) 
is much better than can be achieved by the P&S 
formula. 

The importance of the inclusion of interatomic- 
vector information from the difference Patterson syn- 
thesis is illustrated in Table 2. An enormous error 
reduction occurs with a change from ALG to PAT in 
the SD case, in particular for the most reliably esti- 
mated triplets. A second conclusion is that although 

* For  the Cochran  distr ibution,  W = 2 w 1 2  3 [W12 3 is def ined in 
(22)]. For  the P&S distr ibution,  W=2W,,,,w with u, v, w = 1, 2 
[ W,,ow is def ined in equa t ion  (21) o f  KPS2].  For  the SD distr ibution,  

= r'q-I'~" is defined in (38)], W = ----,t23"~'qt'~" with 1, m, n 1, 2 L,,.~.123 

the SD (ALG) technique yields slightly worse results 
than the P&S (ALG) technique, in particular for 
larger DR, the SD (PAT) technique is invariably much 
better than both the P&S (ALG) and P&S (PAT) 
techniques. Similar trends are present in the data for 
the small protein APP, listed in Tables 3 and 4. 

The construction of Tables 5 to 8 (2DW case) is 
similar to that of Tables 1 to 4. The 2DW data have 
very small diffraction ratios in the range 0.012-0.047. 
In this range, much smaller than 0.1, the P&S 
expression fails to give reasonable estimates because 
of the highly correlated data, so only the Cochran 
estimates are listed. From the tables, it can be judged 
that even for DR as small as 0.02, the SD (PAT) 
technique results in reliable estimates. For DR smaller 
than 0.02 (see Tables 5c, d and e), the average error 
of the most reliably estimated triplets increases 
rapidly. This may be caused partly by the relatively 
large number of negative doublets. However, if true 
doublets are employed in the triplet estimation, the 
average error in the SD (PAT) technique also 
increases so the deterioration cannot be attributed to 
the doublets alone. The APP data in Table 7 show 
that, even for small DR (0.047), an acceptable overall 
triplet phase-sum error is possible. In Table 8, a 
representative set of triplets of APP show that, in 
spite of the very small doublet estimates (concen- 
trated near zero owing to the small DR), the triplet 
phase-sum estimates may be found anywhere and are 
correctly estimated in the interval (-7r, ~). 
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Table 6. Cumulative statistics of the triplet phase sums for different probabilistic expressions 

2 D W  case, space  g roup  P1,  resolut ion 2.3 A,  radia t ions  Cr  Ka-Fe  Ks,  s t rongest  250 levi values  used. 

( a )  Structure:  Hg3Pt-C59Nt5022; D R =  0.04; negat ive  doublets :  0 

COCHRAN SD (ALG) ' SD (PAT) SD (TRUE) 
W NTR ERR W NTR AER ERR W NTR AER ERR W NTR AER 

0.45 251 45 0.0088 194 54 71 0.035 214 23 26 0.040 201 24 
0,30 1020 50 0.0079 1065 57 70 0.017 1371 25 28 0.020 1303 24 
0.00 3750 80 0.0000 3750 53 65 0.000 3750 51 66 0.000 3750 48 

(b) Structure: Hg3Pt-C245N63088 , DR= 0.04; negative doublets: 0 

COCHRAN SD (ALG) 
W NTR ERR W NTR AER ERR W 

0.40 159 76 0.0063 127 67 76 0.029 
0.25 1050 89 0.0046 1018 62 72 0.015 
0.00 2555 100 0.0000 2555 68 79 0.000 

(C) Structure:  HgBPt-C493NI27Ot76; D R =  0.03; negat ive doublets :  1 

COCHRAN SD (ALG) 
W NTR ERR W NTR AER ERR W 

0.60 134 125 0.0037 113 70 80 0.014 
0.30 598 110 0.0026 572 75 92 0.006 
0.00 1172 118 0.0000 1172 77 95 0.000 

(d )  Structure:  ngaPt-C741N1910264; D R  = 0.02; negat ive doublets :  2 

C O C H R A N  SD ( A L G )  
W N T R  E R R  W N T R  A E R  E R R  

0.35 97 145 0.0024 136 81 104 
0.20 637 134 0.0019 366 89 117 
0.00 809 135 0.0000 809 95 128 

SD (PAT) SD (TRUE) 
NTR AER ERR W NTR AER 

143 21 23 0.029 138 23 
1021 22 24 0.015 1074 24 
2555 46 56 0.000 2555 44 

SD (PAT) SD (TRUE) 
NTR AER ERR W NTR AER 

109 25 27 0.015 108 26 
585 32 34 0.007 591 31 

1172 56 69 0.000 1172 52 

E R R  

27 
28 
60 

ERR 
24 
26 
54 

E R R  

27 
34 
64 

SD (PAT) SD ( T R U E )  
W N T R  A E R  E R R  W N T R  A E R  E R R  

0.008 156 29 31 0.0093 103 30 31 
0.003 392 40 50 0.0026 497 44 53 
0.000 809 76 105 0.0000 809 72 101 

Table 7. Cumulative statistics of the triplet phase sums for different probabilistic expressions 

2 D W  case, space  g roup  C2,  resolu t ion  2.0 A,  rad ia t ions  Cu K s - C r  Ks,  strongest  250 [E~I values used,  s t ructure:  APP, D R =  0.047, 
negat ive doublets :  5. 

C O C H R A N  SD ( A L G )  SD (PAT) SD ( T R U E )  
W N T R  E R R  W N T R  A E R  E R R  W N T R  A E R  E R R  W N T R  A E R  E R R  

0.25 309 136 0.026 181 47 52 0.038 164 32 35 0.064 184 21 22 
0.20 890 138 0.019 1070 62 76 0.026 950 36 38 0.040 906 24 25 
0.00 3750 153 0.000 3750 78 99 0.000 3750 68 88 0.000 3750 49 66 

At this point, it should be mentioned that, although 
in the Cochran and P&S distributions the reliability 
factors may take large values, in (36) they can be very 
small, even for very accurate triplet estimation. This 
behaviour for W occurs because of the different kind 
of r.v.s involved in SDs. The maximum value for the 
W of the SD distribution is given approximately as 
Wma x ~ ~- l /21~dl~  d . . . .  I , , 2R d. n andthe  R d ( v = 1 , 2 , 3 )  are 
very small quantities and consequently Wmax is also 
small. For example, if n = 1 (one heavy atom in the 
unit cell) and the R d values (expressed in terms of 
E values) range from 0.01-0.1, Wma~ will be of the 
order 10-6-10 -3 , respectively. 

Although the P&S expressions and (36) contain 
apparently similar terms and use the same data, i.e. 
the magnitudes of the observed structure factors and 
the contents of~the unit cell, they are not identical, 
as indicated by the differences shown in the tables 
and those in W. An explanation for this seemingly 
paradoxal difference in results given the same data 

may be found in the different starting points for the 
j.p.d.s. Apparently, the ab initio definition of SDs of 
isomorphous s.f.s to be r.v.s, on the one hand, and 
the simultaneous use of isomorphous s.f.s to be r.v.s, 
on the other hand, exploit the present data in a 
conceptually different way. 

In the SAS and 2DW cases, the new approach is 
able to reduce the error level of the triplet phase-sum 
estimates such that DM may be applied. However, 
in the SIRNAS and SIRAS cases, a sign ambiguity 
still exists. Once this sign problem is solved, the SD 
theory may lead to protein structure determination 
by means of DM in the SIRNAS/SIRAS cases as 
well. This is illustrated in Table 9 by the cumulative 
triplet statistics of APP in the SIRNAS case. Half of 
the doublet population is negative so the triplet statis- 
tics are incorrect. However, if the doublet signs are 
assumed to-be known, the triplet estimates are almost 
perfect: in total, 2495 (x8) out of 3750 (xS) triplets 
are estimated with an average error of 1 mc. It is 
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Table 8. SD theory - a representative sample o f  6 (x8) triplets 

2 D W  case, structure APP, space g roup  C2,  resolut ion 2.0/~,, radiat ions Cr  K a - C u  Kt~, strongest 250 lEd values used, D R  = 0.05. 

H K L EST T R U E  E R R  W En(A, ) -  EH(x2) EK(A,) -- EK(A2) EL(Xt) -- EL(A2) 
10 150 228 101 14 87 0.0114 0.0005 -0.060 -0.001 

94 9 85 
106 20 86 
100 15 85 
102 15 87 
96 10 86 

109 21 88 
102 16 86 

19 180 191 43 37 6 0.0349 -0.025 -0.031 -0.020 
52 47 5 
34 28 6 
43 38 5 
47 41 6 
56 51 5 
39 32 7 
48 42 6 

26 30 47 -155 -159 4 0.0398 -0.011 -0.033 -0.044 
-159 -164 5 
-161 -166 5 
-165 -171 6 
-149 -152 3 
-153 -157 4 
-155 -159 4 
-159 -164 5 

31 120 207 205 242 37 0.0190 -0.062 0.009 0.000 
199 235 36 
200 235 35 
193 228 35 
208 244 36 
202 237 35 
203 237 34 
196 230 34 

36 150 170 421 441 20 0.0313 -0.053 -0.060 0.049 
417 436 19 
427 447 20 
423 442 19 
425 445 20 
421 440 19 
431 451 20 
427 446 19 

53 60 173 327 284 43 0.0148 -0.012 -0.045 0.043 
324 278 46 
331 288 43 
328 282 46 
332 289 43 
329 283 46 
336 293 43 
333 287 46 

Table 9. Cumulative statistics of the triplet phase sums for different probabilistic expressions 

Structure APP, S I R N A S  case, space g roup  C2, resolut ion 2.0 ~ ,  radiat ion Cu Ka,  strongest 250 lEvi values used, D R  = 0.56, negative 
doublets :  105. 

C O C H R A N  P&S (PAT) P&S (TRUE)  
W N T R  E R R  W N T R  A E R  E R R  W N T R  A E R  

0.25 289 132 1.0 424 144 221 1.5 253 68 
0.15 1770 152 0.5 1798 139 212 0.5 1685 71 
0.00 3750 176 0.0 3750 144 217 0.0 3750 104 

SD (PAT) SD ( T R U E )  
W N T R  A E R  E R R  W N T R  A E R  E R R  

200 102 79 158 230 375 0.7 0.7 
140 1393 0.8 0.8 

100 2099 111 201 40 2495 1.0 1.0 
30 2680 6.9 12.7 
20 2896 14.6 26.1 
10 3194 24.3 46.3 

0 3750 129 213 0 3750 40.6 76.1 

E R R  

73 
79 

126 
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Table 10. SD theory for very low DRs - cumulative 
statistics of the triplet phase sums 

Structure Si-C744N~910264, SIRNAS case, space group P1, reso- 
lution 2.3 ,~, radiation CrKa, strongest 250 lEd values used, 
DR = 0.02, negative doublets: 78. 

SD (TRUE) 
W NTR AER ERR 

320 100 45 46 
190 465 46 49 

0 806 54 57 

promising that this high-reliability triplet estimation 
can be achieved even for very low DR or very 'light' 
heavy atoms (Table 10). Fan, Han, Qian & Yao (1984) 
and Klop, Krabbendam & Kroon (1990) proposed 
expressions to solve this sign problem. However, the 
expressions developed in these papers depend on 
N -1/2 and consequently the reliability of these for- 
mulae is low for large structures. In view of the n 
dependence (n<< N)  of the SD expressions, the 
difference structure factors are expected to play an 
important role in this sign determination. The 
extension of the SD theory to the estimation of other 
types of (sem-)invariants is obvious. In particular, 
quartet phase sums are expected to be of importance 
for the solution of large molecules (Sheldrick, 1990). 
Research on these subjects is already in progress. 
Finally, it is worth mentioning that the SD theory can 
also be applied to the case of (calculated) partial 
structure factors and structure factors of the associ- 
ated complete structure (with both considered as 
isomorphous data sets). This may be helpful not only 
for protein structures but also for difficult small struc- 
tures. 

One of us (CEK) gratefully acknowledges financial 
support by the Commission of the European Com- 
munities, under the project B/BIOT 900103-001. 

A P P E N D I X  

The j.p.d, of  a s ingle structure factor 

The derivation of the j.p.d, of a single structure factor 
F~, where 

F,, = F~I exp (i~p~,) 
N 

= • fjv exp (2~riH~. rj), (A1) 
j= l  

comes down to the derivation of the j.p.d, of the r.v.s 
R, for the magnitude [F~[ and 4~ for the phase q~,. 
The j.p.d. P(R~, 4~) can be written as (see, for 
example, Karle & Hauptman,  1958) 

oO27r 
P(R~, 4 , , )=  R~(2rr) -2 ~ ~ P 

o o 

x exp [-ipR~, cos (0 - 4,,)] 

x C(p, 0) dO dp, (A2) 

where C is the c.f., 

C =(exp [ i(j~=i Pfjv cos (27rH~" rj-O)) l I" 
(A3) 

With the assumption that the p.r.v.s for the atomic 
coordinates are independent, (A3) becomes 

C = e x p  ( ~  {ln(exp[ipfj~cos(2~rH~'rj-O)]),)). 
j=l  

(A4) 

Evaluation of (A4) (see, for example, Peschar, 1991) 
gives 

C = e x p  (-z~p2/4) (A5) 

with 
N 

E I£ 12 (A6)  
j= i  

With the variable transformation P = tz-2 ~/2 and sub- 
stitution of (A5) into (A2), one gets 

co2~r 
P(R~, O~,)= R~,(27r)-2z~ I j" j" t 

o o 

× exp [-itR~(z~,) -1/2 cos (0 - 4~,) 

- t2/4] dt. 

With the integral formula (Giacovazzo, 
equation E.16) 

(A7) 

1980, 

oo21r 
(27r) -1 ~ ~ exp (--p2t2-- iat cOS ¢) t  dt de  

o 0 

= (2p2) -I exp [ -a2(4p2)- l ] ,  (A8) 

(A7) becomes 

P(R~, O~)=2R~(z~) -I exp[-R2~(z~)-l]. (A9) 
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Abstract 

With tables of subduced representations as a starting 
point and use of the Frobenius reciprocity theorem, 
a simple method to obtain induced representations 
is given. Tables are given of the 22 induced rep- 
resentations of 532 (I) and of the 84 induced rep- 
resentations of 532/m (Ih). 

Introduction 

The crystallographic and molecular point groups are 
prime candidates to exemplify various group- 
theoretical properties. They are well known to both 
physicists and chemists. Their orders are not large 
so they lend themselves to non-computerized calcula- 
tions but neither are they small so they can be 
used to illustrate the distinct possible cases of group- 
theoretical properties. 

The properties we wish to emphasize here are those 
of subduced and induced representations of groups: 
their dimension, additivity, transitivity and how they 
are related by the Frobenius reciprocity theorem. 
These properties will be used to construct the induced 
representations of the icosahedral point groups 532 
(I)  and 532/m (Ih) from the subduced representa- 
tions of these groups onto their subgroups. 

We have chosen the icosahedral groups because of 
the interest in them in many fields: electronic (Boyle, 
1972) and vibrational (Boyle & Parker, 1980) proper- 
ties of molecules, coupling coefficients (Fowler & 

0108-7673/93/030569-04506.00 

Ceulemans, 1985), tile Jahn-Teller effect (Ceulemans 
& Fowler, 1989, 1990), inorganic (Pitochelli & Haw- 
thorne, 1960) and biological molecules (Litvin, 1975), 
and quasicrystals (Schechtman, Blech¢ Gratias & 
Cahn, 1984; Jaric, 1988). Recently, Litvin (1991 ) tabu- 
lated many of the basic group-theoretical properties 
of the icosahedral point groups. Their irreducible 
representations and character tables are well known 
(Griffith, 1964; Backhouse & Gard, 1974). We do not 
give here the fundamental principles of group theory 
or group representations and instead refer the reader 
to classic works (Lomont, 1959; Murnagham, 1963; 
Gorenstein, 1968; Kirillov, 1976; Serre, 1978; Mal- 
liavin, 1981). 

I. Notation and basic properties 

Consider a finite group G, a subgroup H, a representa- 
tion 7r(G) of G and a representation p(H) of H. 

(i) The representation of H subduced from 7r(G) 
is denoted 7r(G)J,H, while the representation of G 
induced by p(H) is denoted p(H)'fG. 

(ii) The dimensions of these representations are 
related: 

dim [ 7r(G)~ HI = dim [ zr(G)]; 

dim [p(H)~' G] = dim [p(H)]  x IGI/IHI; 

where IGI and [H I are the orders of G and H, respec- 
tively. 
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